Mean Interpolation of Entire Functions

C. S. F. Shull
Department of Mathematics, Southern Methodist University, Dallas, Texas 75222

Communicated by G. G. Lorentz
Received March 23, 1979

Abstract

We study the characterization of an entire function from its "means," that is, a combination of the function's averages on concentric circles and its derivatives at the center. It is shown that a large class of entire functions is uniquely determined from this combination. Given a sequence $\left\{r_{n}\right\}$ of nonnegative radii which are restricted in growth and a sequence of complex numbers $\left\{\lambda_{n}\right\}$, which depends on $\left\{r_{n}\right\}$, a unique entire function f is found such that λ_{n} is the "mean" of f on the circle $z \mid=r_{n}$, solving a mean interpolation problem. Consequently, a series representation for a given entire function is constructed from its "means."

1. Introduction and Results

Let Γ_{z} be the class of entire functions of growth category $(\rho, \tau) \leqslant(\beta, 0)$, i.e., the order ρ of f is less than or equal to β and if $\rho=\beta$ then the type τ is equal to 0 . Let $w_{n}{ }^{k}=\exp (i 2 \pi k / n), k=1,2, \ldots, n$, be the nth roots of unity. Given a sequence of radii $\left\{r_{n}\right\}, r_{n} \geqslant 0$, we consider the following "means" of an entire function f,

$$
\begin{array}{rlrl}
s_{n}\left(r_{n}, f\right)-\frac{1}{n} \sum_{k=1}^{n} f\left(r_{n} w_{n}{ }^{\prime}\right), & & \text { if } r_{n}>0, \\
& =f^{(n)}(0) n!, & & \text { if } r_{n}=0
\end{array}
$$

That is, if $r_{n} \cdots 0, s_{n}\left(r_{n}, f\right)$ is the average of f at equally spaced points on the circle $:=r_{n}$, and if $r_{n}=0, s_{n}\left(r_{n}, f\right)=a_{n}$, the Taylor coefficient of f at 0 .

In [1], Blakley et al. studied the means, $s_{n}\left(r_{n}, \cdot\right)$, for functions holomorphic in the unit circle, where $0<r_{n} \leqslant 1$. We obtain some analogous results for entire functions and for nonnegative radii, r_{n}, of restricted growth.

First. we have
Theorem 1. Let $f \in \Gamma_{\beta}$ and let $r_{n} \times 0$ for an infinite number of n 's such that $r_{n} \quad O\left(n^{1 / 9}\right)$. If

$$
\begin{equation*}
s_{n}\left(r_{n}, f\right)=0, \quad n=1,2 \ldots \tag{1}
\end{equation*}
$$

then $f 0$.

Thus, if $\left\{r_{n}\right\}$ is given as above and $f, g \in \Gamma_{3}$ such that for n 1. 2, ... $s_{n}\left(r_{u}, f\right) \quad s_{n}\left(r_{n}, g\right)$, then $s_{n}\left(r_{u}, f \cdots g\right) \quad 0$ for $n=1$. $2 \ldots$, and $f g^{\prime}$ Therefore, certain entire functions are uniquely determined by the $s_{n}\left(r_{n},\right)$.

As a consequence of the proof of Theorem 1, we have the following

Corollary. Let f be an entire function and r_{n} ofor at most a jinite number of n 's. If $f(0)=0$ and $s_{n}\left(r_{n}, f\right) \quad 0$ for $n-1,2, \ldots$ then $f 0$.

None of the conditions in (1) can be left out, as seen in

Theoren 2. Let $r_{u}=0$. For cach positive integer m there is a unique polynomial p_{m} of degree m, leading coefficient equal to 1 , and $p_{m}(0) \quad 0$ such that, for $n=1,2, \ldots$.

$$
\begin{align*}
s_{n}\left(r_{n}, p_{m}\right) & =r_{n}^{n} \delta_{n, m}, & \text { if } r_{m}=0, \tag{2}\\
& =\delta_{n, m}, & \text { if } r_{m}=0 .
\end{align*}
$$

It will be shown that if all $r_{n}=0$ then $p_{i n} \quad z^{\prime \prime \prime}$, as would be expected. Let

$$
\begin{array}{ccc}
\hat{s}_{n}\left(r_{n}, f\right) & s_{n}\left(r_{n}, f\right) r_{n}^{n} . & \text { if } r_{n}>0, \\
f^{(n)}(0) n!, & \text { if } r_{n}=0 . \tag{3}
\end{array}
$$

Given a sequence of nonnegative real numbers $\left\{r_{n}\right\}$, (the "mean" interpolation radii), and a sequence of complex numbers $\left\{\lambda_{n}\right\}$, (the mean data), is there a unique function f such that $\hat{s}_{n}\left(r_{n}, f\right) \cdots \lambda_{n}$, for all n ? We have the following answer.

Theorem 3. Let $r_{n} \quad O\left(n^{1 / \beta}\right), \beta \therefore 0$, and let $\left\{\lambda_{n}\right\}$ be any sequence of complex numbers satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left|\lambda_{n}\right|^{\beta ; n} \cdots 0 \tag{4}
\end{equation*}
$$

Then the polynomial series

$$
\begin{equation*}
\sum_{n-1}^{\infty} \lambda_{n} p_{n}(z) \tag{5}
\end{equation*}
$$

converges uniformiy on every compact set of the complex plane to an entire function f in Γ_{β} such that $\hat{s}_{n}\left(r_{n}, f\right) \ldots \lambda_{n}, n \ldots 1,2, \ldots$. Furthermore, f is the only function in Γ_{B} which satisfies this mean interpolation property.

The following theorem will allow us to reconstruct an entire function f from the $s_{n}\left(r_{n}, f\right)$, where the λ_{n} of (4) will be replaced by

$$
\begin{align*}
q_{n}\left(r_{n}, f\right) & =\left(s_{n}\left(r_{n}, f\right)-f(0)\right) r_{n}{ }^{n}, & & \text { if } r_{n}>0, \tag{6}\\
& =s_{n}\left(r_{n}, f\right), & & \text { if } r_{n} \cdots 0 .
\end{align*}
$$

Note, $q_{n}\left(r_{n}, f\right)=\hat{s}_{n}\left(r_{n}, f\right)$, if $f(0)=0$.
Finally, letting Λ_{β}, a subset of Γ_{β}, be the set all entire functions of order strictly less that β, we have

Theorem 4. Let $r_{n} \geqslant 0$ and $r_{n}=O\left(n^{1 / \beta}\right)$. Every function f in Λ_{β} can be represented by the polynomial series

$$
\begin{equation*}
f(z)=f(0) \div \sum_{n=1}^{\infty} q_{n}\left(r_{n}, f\right) p_{n}(z) \tag{7}
\end{equation*}
$$

where the p_{n} are given in Theorem 2.

2. Uniqueness Results

Let ρ be the order and τ be the type of a function f. It is known [cf. [2]] that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \frac{n \log n}{\log \left(1\left|a_{n}\right|\right)}=\rho, \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup n\left|a_{n}\right|^{\rho / n}=e \tau \rho, \quad \text { if } \quad 0<\rho<\infty \tag{9}
\end{equation*}
$$

We will need the following lemma which is a consequence of (8) and (9).
Lemma 1. Let $f(z)=\sum_{k=1}^{\infty} a_{k} z^{t c}$ be of growth category (ρ, τ). Then $(\rho, \tau) \leqslant(\beta, 0)$ for some $\beta>0$ if and only if

$$
\begin{equation*}
\lim _{n \rightarrow x} n\left|a_{n}\right|^{\sin n}=0 \tag{10}
\end{equation*}
$$

Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$. If $r_{n}>0$, then

$$
s_{n}\left(r_{n}, f\right)=\sum_{k=0}^{\infty} a_{k} r_{n}{ }^{k}\left(\frac{1}{n} \sum_{j=1}^{n} w_{n}^{j k}\right)=\sum_{k=0}^{\infty} a_{n k} r_{n}^{n k} .
$$

If $s_{n}=0$, we have

$$
\begin{equation*}
a_{0} / r_{n}+\sum_{k=1}^{\infty} a_{n k} r_{n}^{n(k-1)}=0, \quad \text { for } \quad r_{n}>0 \tag{11}
\end{equation*}
$$

It will be necessary in the proof of Theorem 1 to show that $f(0) \quad a_{0} \quad 0$. To do this we have

Lemma 2. Let $f \in \Gamma_{\beta}, r_{n}=O\left(n^{1 / \beta}\right)$ and $\left\{r_{n_{j}}\right\}$ be a subsequence such that $r_{n_{j}}>0$ for each j. If $s_{n_{j}}\left(r_{n_{j}}, f\right) \quad 0$, then $f(0)-0$.

Proof. By hypothesis and Eq. (11), we have

$$
a_{0} \quad \sum_{k=1}^{x} a_{n_{j},} r_{n_{j}}^{n_{j} k} ; \quad ; \quad 1,2, \ldots
$$

Thus,

$$
\begin{equation*}
\left.a_{0}\right) \because \sum_{k=1}^{x}\left|a_{n_{k}}\right| r_{n}^{n_{j} / k} \tag{12}
\end{equation*}
$$

for each j.
In order to complete the proof of Lemma 2, let $c \quad 0$ such that $r_{n} \cdots i^{1, b}$ for all n and let $0<\epsilon<c^{-\beta}$. Since $f \in \Gamma_{B}$, we have by Lemma I. that a_{n} $(\epsilon / n)^{n / \beta}$ for all large n and Eq. (12) becomes

$$
\begin{gathered}
a_{0}: \sum_{l=1}^{\infty}\left(\frac{\epsilon}{n_{j} k}\right)^{n k} \cdot\left(c^{\beta} n_{j}\right)^{n, k} \\
\sum_{k=1}^{\infty}\left(\epsilon c^{(5}\right)^{n, k}
\end{gathered}
$$

The series is convergent for each n_{j} since $\epsilon c^{\beta} \& 1$. Thus as $j \rightarrow x$ the series tends to zero. Therefore, $f(0) \cdots a_{0} \quad 0$, which completes the proof of Lemma 2.

Proof of Theorem 1. Let $f(z)=\sum_{k=1}^{i r} a_{k} z^{k}$, then by (11) and Lemma 2

$$
\begin{equation*}
\sum_{k=1}^{n} a_{n k} r_{n}^{n(k \cdot 1)}=0, \quad \text { if } \quad r_{n} \quad 0 \tag{13}
\end{equation*}
$$

Using the definition of s_{n} for $r_{n} \quad 0$ and the fact that each $s_{n} \quad 0$. we have

$$
\begin{equation*}
a_{n}=0, \quad \text { if } r_{n}=0 . \tag{14}
\end{equation*}
$$

Equations (13) and (14) form an infinite homogeneous system of equations. It is, therefore, necessary and sufficient to prove this system has only the trivial solution. Let $B=\left(b_{j, k}\right)$ be the infinite coefficient matrix given by

$$
\begin{align*}
b_{i, k} & \cdots r_{j}^{k} . & & \text { if } j \mid k, \tag{15}\\
& =0, & & \text { if } j+k
\end{align*}
$$

where $r_{j}{ }^{0}=1$, even if $r_{j}=0$. Equations (13) and (14) can be written as the matrix equation $B A^{T}=O$, where $A=\left(a_{1}, a_{2}, \ldots\right)$.

Let $\left.B_{N}=\left(b_{j, k}\right)_{1, k}\right)_{1 \leqslant j, k \leqslant N}, N=1,2, \ldots$, be the truncated $N \times N$ matrices. Since $\operatorname{det}\left(B_{N}\right)=1$, for each N, there exists an inverse G_{N} of B_{N} for each N, which is a truncation of the infinite matrix

$$
G==\left(g_{j}(k)\right)=\left[\begin{array}{ccc}
g_{1}(1) & g_{1}(2) & \cdots \\
g_{2}(1) & g_{2}(2) & \cdots \\
\vdots & \vdots &
\end{array}\right] .
$$

In fact $G_{N} B_{N}=I_{N}$, where I_{N} is the $N \times N$ identity matrix and so

$$
\sum_{k=1}^{N} g_{j}(k) b_{k, n}=\delta_{j, n}, \quad 1 \leqslant j, \quad n \leqslant N
$$

where $\delta_{i, n}$ is the Kronecker delta. Using (15), we have

$$
\begin{equation*}
\sum_{k^{\prime} n} g_{j}(k) r_{k}^{n-k}=\delta_{j, n}, \tag{16}
\end{equation*}
$$

which is independent of N.
By induction it was shown in [1] that

$$
\begin{equation*}
g_{j}(n)=0, \quad \text { if } \quad j+n \tag{17}
\end{equation*}
$$

and

$$
g_{i}(j)=1, \quad j-1,2, \ldots
$$

and it follows from (16) that

$$
\begin{equation*}
g_{j}(n)=-\sum_{\substack{k i n \\ j \leqslant k<n}} g_{j}(k) r_{j}^{n-j}, \quad j: n, \quad j<n . \tag{18}
\end{equation*}
$$

Let h be the function defined recursively on the set of positive integers by

$$
\begin{aligned}
& h(1)=1, \\
& h(n)=-\sum_{\substack{l i n \\
l<n}} h(l), \quad \text { if } n>1 .
\end{aligned}
$$

Later, we will use the following lemma from [1].
Lemma 3. Let $h(n)$ be defined as above, then

$$
h(n) \leqslant 2^{(\log n / \log 2)^{2}}, \quad n=1,2, \ldots .
$$

Letting $\sigma_{n}=\max _{1 \leqslant k \leqslant n}\left\{r_{k}\right\}$, we have the following bound on $g_{j}(k)$.

Lemma 4. For each j and k

$$
\left|g_{j}(k)\right|<h(k) \sigma_{k}^{k-i} .
$$

where $\sigma_{k}^{n}=\mathbf{1}$, if $\sigma_{k}=0$.
Proof. Since $h(k) \geqslant 1$ and $\sigma_{k} \geqslant 0$.

$$
g_{j}(k)=0 \leqslant h(k) \cdot \sigma_{i,}^{i-j} \quad \text { if } j \nmid k,
$$

and

$$
g_{j}(j)=1 \leqslant h(j)=h(j) \sigma_{j}^{j-j} .
$$

Assume that for each j, j, k, Lemma 4 is true for each $d, 1 \leqslant d<k$. Then, by (18) and the fact that $\sigma_{k} \leqslant \sigma_{k=1}$, we have

$$
\begin{aligned}
\left|g_{j}(k)\right| & \leqslant \sum_{\substack{d ; k \\
d \neq k}}\left|g_{j}(d)\right| r_{d}^{k-d} \\
& =\sum_{\substack{d, k \\
d, k}}\left(h(d) \sigma_{d}^{d-j}\right) \sigma_{d}^{k-d} \\
& \leq \sigma_{k}^{k-j} \sum_{\substack{d, k \\
d<k}} h(d)=\sigma_{k}^{k-j} h(k),
\end{aligned}
$$

which completes the proof.
We are now ready to complete the proof of Theorem 1. By matrix multiplication [cf. [1]] we have for each i,

$$
\begin{equation*}
\left|a_{j}\right| \leqslant \sum_{k=N!1}^{\infty}\left|a_{k} c_{k}\right|, \quad N=j+1, j+2 \ldots, \tag{19}
\end{equation*}
$$

where

$$
r_{k}=\sum_{\substack{d, d \leqslant k}} g_{j}(d) r_{d}^{h-d} .
$$

We wish to show the series in (19) is convergent, for then the right-hand side would go to zero as $N \rightarrow \infty$, implying $a_{j}=0$.

From the proof of Lemma 4 and the fact that $k-N$, it follows that $\left|c_{k}\right| \leqslant \sigma_{k}^{k-j} \cdot h(k)$. Since $r_{n}=O\left(n^{1 / \beta}\right)$, then there is a constant $c>0$, such that $\sigma_{n} \leqslant c n^{1 / \beta}$ for all n.

Let $0<\epsilon<1 / c$. By Lemma $1,\left|a_{k}\right|^{1 / k} \leqslant \epsilon / h^{1 / \beta}$ and

$$
\begin{aligned}
\left|a_{l:} c_{h}\right|^{1 / h} & \leqslant \sigma^{1-j / h}(h(k))^{1 / k} \cdot \epsilon / k^{1 / \beta} \\
& \leqslant(\epsilon c)\left[h(k) /\left(c k^{1 / \beta}\right)^{j}\right]^{1 / \beta}
\end{aligned}
$$

for all large k. According to Lemma 3, it follows that

$$
\lim _{k \rightarrow \infty} \sup \left[h(k) /\left(c k^{1 / \beta}\right)^{z}\right]^{1 / k}=a<1
$$

Thus,

$$
\lim _{k \rightarrow \infty} \sup \left|a_{k} c_{k}\right|^{1 / k} \leqslant \epsilon c<1
$$

and hence $\sum_{k=N+1}^{\infty}\left|a_{k} c_{k}\right|$ converges. Taking $N \rightarrow \infty$ in (19), we obtain $a_{j}=0$ for each $j=1,2, \ldots$. Therefore $f(z) \equiv a_{0}=0$, which completes the proof of Theorem 1.

Proof of Corollary. Since $f(0)=0$ we may write $f(z)=\sum_{k=1}^{\infty} a_{k} z^{k}$. There exists a positive integer N, such that $r_{N}>0$, and $0=r_{N+1}=r_{N+2}=$ \cdots. Thus $s_{n}\left(r_{n}, f\right)=a_{n}=0$ for $n=N+1, N+2, \ldots$, and $f(z)=\sum_{k=1}^{N} a_{k} z^{k}$. From Eqs. (13) and (14) of Theorem 1, we obtain

$$
\sum_{k=1}^{[N / n]} a_{n k} r_{n}^{n(!-1)}=0, \quad \text { if } \quad r_{n}>0
$$

and

$$
a_{n}=0, \quad \text { if } \quad r_{n}=0 .
$$

which, for $1 \leqslant n \leqslant N$, forms an $N \times N$ homogeneous system of linear equations. This system is represented by the matrix equation

$$
B_{N} A^{T}=O_{N \times N}
$$

where $A=\left(a_{1}, \ldots, a_{N}\right)$ and B_{N} is the truncated matrix of Theorem 1 , which is nonsingular. Hence, the only solution is $A=0$ and, therefore, $f(z) \equiv 0$.

3. Representation by Polynomial Series

We are now ready to present the
Proof of Theorem 2. Let $p_{m}(z)=a_{m} z^{m}+\cdots+a_{1} z$, and $n>m$. Then $n+k, k=1, \ldots, m$ and hence

$$
\begin{aligned}
s_{n}\left(r_{n}, p_{m}\right) & =\frac{1}{n} \sum_{j=1}^{n} \sum_{k=1}^{m} a_{k} w^{j k} \\
& =\sum_{k=1}^{m} a_{k} \frac{1}{n} \sum_{j=1}^{n}\left(w^{k}\right)^{j}=0
\end{aligned}
$$

for $r_{n}>0$. If $r_{n}=0$, then $s_{n}\left(r_{n}, p_{m}\right)=-p_{m}^{(n)}(0)=0$, since $m<n$.

In order to determine p_{m}, we need to consider Eqs. (2) only for $n=1, \ldots, m$. From (2) and (11) we have

$$
\begin{aligned}
\sum_{k=1}^{[m / n]} a_{n k} r_{n}^{n(k-1)} & =0, \\
a_{n}=0, & \text { if } \quad r_{n}>0, n<m, \\
r_{n} & =0,
\end{aligned}
$$

and

$$
a_{m}=1, \quad \text { if } \quad r_{m}>0, \quad \text { or } \quad r_{m}=0
$$

In all cases, the coefficients a_{1}, \ldots, a_{m} of p_{m} are uniquely determined by the nonhomogeneous system

$$
B_{m}\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{m}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

where B_{m} is the truncated characteristc matrix in the proof of Theorem 1 with inverse $G_{m}=\left(g_{j}(k)\right)_{1 \leqslant j, k \leqslant m}$. Thus,

$$
\left[\begin{array}{c}
a_{1} \tag{20}\\
\vdots \\
a_{m}
\end{array}\right]=G_{m}\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]
$$

Since $g_{m}(m)=1, a_{m}=1$ and this completes the proof.
In fact, we can derive p_{m} explicity. From (17) and (20), $a_{k}=g_{k}(m)=0$ if $k+m$. Hence, p_{m} is given by

$$
\begin{equation*}
p_{m}(z)=\sum_{k ; m} g_{k}(m) z^{k} . \tag{2I}
\end{equation*}
$$

If all r_{n} are zero we obtain $p_{m}(z)=z^{m \prime \prime}$. This is true because $g_{k}(m)=0$, if $k<m$ and $r_{k}=0$. Indeed, from (18) $g_{k}(2 k)=-g_{k}(k) r_{k}{ }^{k}=0$. Assume $g_{k}(d)=0$, for each $d, k<d<m$. Again from (17)

$$
g_{k}(m)=-\sum_{\substack{d \mid m \\ k<d<m}} g_{k}(d) r_{d}^{m_{i}-d}=0 .
$$

We are now ready to prove Theorem 3 on interpolation.

Proof of Theorem 3. First we prove the convergence of the polynomial series (5). Let $|z| \leqslant r$ From (21) and Lemma 3, it follows that

$$
\begin{aligned}
\left|p_{n}(z)\right| & \leqslant \sum_{k \mid n}\left|g_{k}(n)\right||z|^{k} \\
& \leqslant \sum_{k \mid n} \sigma_{n}^{n-k} h(n) r^{k} \\
& \leqslant n h(n)\left[\max \left\{\sigma_{n}, r\right\}\right]^{n} .
\end{aligned}
$$

If $r_{u} \leqslant M$, for all n, then $\max \left\{\sigma_{n}, r\right\}<c_{r}$ for some constant c_{r}, independent of z and n. If $|z| \leqslant r$, then

$$
\left|\lambda_{n} p_{n}(z)\right|^{1 / n} \leqslant c_{r}(n h(n))^{1 / n}\left|\lambda_{n}\right|^{1 / n}
$$

Since $h(n)<2^{(\log n / \log 2)^{2}}$, we have $\lim _{n \rightarrow \infty} \sup [n h(n)]^{1 / n}=a \leqslant 1$, and since $\lim _{n-x} \mid \lambda_{n}^{1 / n}=0$, it follows that

$$
\lim _{n \rightarrow \infty}\left|\lambda_{n} p_{n}(z)\right|^{1 / n}=0
$$

Thus, the series $\sum_{n=1}^{\infty} \lambda_{n} p_{n}(z)$ converges uniformly on every compact set of the complex plane.

Suppose, however, $r_{n} \rightarrow \infty$ as $n \rightarrow \infty$, then for all large $n, \max \left\{\sigma_{n}, r\right\}=\sigma_{n}$ and if $z \mid \leqslant r$, then

$$
\left|\lambda_{n} p_{n}(z)\right|^{1 / n} \leqslant(n h(n))^{1 / n} \sigma_{n}\left|\lambda_{n}\right|^{1 / n}
$$

By the hypotheses, there exist $d>0$ and $\epsilon>0$ such that for all large n $\sigma_{n} \leqslant d n^{1 / \beta}$ and $\left|\lambda_{n}\right|^{1 / n}<\epsilon / n^{1 / \beta}$. If $|z| \leqslant r$, then

$$
\left|\lambda_{n} p_{n}(z)\right|^{1 / n} \leqslant \epsilon d(n h(n))^{1 / n}
$$

for all large n and so

$$
\lim _{n \rightarrow \infty} \sup \left|\lambda_{n} p_{n}(z)\right|^{1 / n} \leqslant \epsilon d<1
$$

uniformly for $|z| \leqslant r$. Therefore, the series $\sum_{n=1}^{\infty} \lambda_{n} p_{n}(z)$ converges to some entire function f, and we may write $f(z)=\sum_{n=1}^{\infty} \lambda_{n} p_{n}(z)$. Since $p_{n}(0)=0$ for all $n, f(0)=0$.

Write $f(z)=\sum_{k=1}^{\infty} a_{k} z^{k}$. In order to show that $f \in \Gamma_{\beta}$, it must be shown that $\lim _{k \rightarrow \infty} k\left|a_{k}\right|^{\beta / k}=0$, according to Lemma 1 . Now by convergence,

$$
\begin{aligned}
\sum_{k=1}^{\infty} a_{k} z^{k} & =\sum_{n=1}^{\infty} \lambda_{n} p_{n}(z) \\
& =\sum_{n=1}^{\infty} \lambda_{n}\left(\sum_{k \mid n} g_{k}(n) z^{k}\right) \\
& =\sum_{k=1}^{\infty}\left(\sum_{n=1}^{\infty} \lambda_{k n} g_{k}(k n)\right) z^{k}
\end{aligned}
$$

Equating coefficients and noting that $g_{k}(k)=1$, we have

$$
a_{k} \quad \sum_{n=1}^{\infty} \lambda_{k n} g_{k}(k n)=\lambda_{k}+\sum_{n=2}^{\infty} \lambda_{k n} g_{k}(k n) .
$$

Recall that $\sigma_{n} \leqslant d n^{1 / \beta}$ for all n. For any $\epsilon>0, \epsilon<1 /(2 d)$, we have $\left|\lambda_{n}\right|<\left(\epsilon / n^{1 / \beta}\right)^{n}$ for all large n. Thus, for large n,

$$
\begin{aligned}
\left|a_{k}\right| & \leqslant\left|\lambda_{k}\right|+\sum_{n=2}^{\infty}\left|\lambda_{k n}\right|\left|g_{k}(k n)\right| \\
& \leqslant\left|\lambda_{k}\right|+\sum_{n=2}^{\infty}\left|\lambda_{k n}\right| \sigma_{k n}^{k n-k} h(k n) \\
& \leqslant \frac{\epsilon^{k}}{k^{k / \beta}}+\sum_{n=2}^{\infty} \frac{\epsilon^{k n}}{k n^{k n / \beta}}\left[d(k n)^{1 / \beta}\right]^{k n-k} h(k n) \\
& \leqslant \frac{\epsilon^{k}}{k^{k / \beta}}\left[1+\sum_{n=2}^{\infty}(\epsilon d)^{k(n-1)} h(k n)\right]
\end{aligned}
$$

Now $h(k n) \leqslant 2^{(\log k n / \log 2)^{2}}<2^{k(n-1)}$, for large n, and so

$$
\left|a_{k}\right| \leqslant \frac{\epsilon^{k}}{k^{k / \beta}} \sum_{n=1}^{\infty}(2 \epsilon d)^{k(n-1)}
$$

The series in the above inequality converges. Thus as $k \rightarrow \infty$, the series tends to zero, then $\left|a_{k}\right|<c \epsilon^{k} / k^{k / \beta}$ for some constant c and all large k. Since ϵ is arbitrary, it follows that $\lim _{k \rightarrow \infty} k\left|a_{k}\right|^{\beta / k}=0$. Therefore, f is of growth category $(\rho, \tau) \leqslant(\beta, 0)$ and so $f \in \Gamma_{\beta}$.

By Theorem 2 and the definition of $\hat{s}_{n}\left(r_{n}, f\right)$ in (3),

$$
s_{n}\left(r_{n}, f\right)-\sum_{m=1}^{\infty} \lambda_{m} \hat{s}_{n}\left(r_{n}, p_{m}\right)=\lambda_{n}
$$

for each $n=1,2, \ldots$. Furthermore, if $g \in \Gamma_{B}$ and $\hat{s}_{n}\left(r_{n}, g\right) \quad \lambda_{n}$ for $n \ldots 1$, $2, \ldots$, then $\hat{s}_{n}\left(r_{n}, f-g\right)=0$ and, hence, $s_{n}\left(r_{n}, f-g\right)=0$. By Theorem 1. $f=g$, which completes the proof of Theorem 3.

Proof of Theorem 4. We will show that any $f \in \Gamma_{\beta}$ is given by (7). First let

$$
g(z)=f(0)+\sum_{n=1}^{\infty} \lambda_{n} p_{n}(z)
$$

where $\lambda_{n}=q_{n}\left(r_{n}, f\right)$ (see (6)). If it can be shown that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n\left|\lambda_{n}\right|^{\beta / n}=0 \tag{22}
\end{equation*}
$$

then, according to Theorem 3, we will have $g \in \Gamma_{\beta}$. If $r_{m}=0$,

$$
\begin{aligned}
s_{m}\left(r_{m}, g\right) & =s_{m}\left(r_{m}, f(0)\right)+\sum_{n=1}^{\infty} \lambda_{n} s_{m}\left(r_{m}, p_{n}\right) \\
& =0+\lambda_{m}=q_{m}\left(r_{m}, f\right) \\
& =s_{m}\left(r_{m}, f\right) .
\end{aligned}
$$

If $r_{w}>0$, then

$$
\begin{aligned}
s_{m}\left(r_{m}, g\right) & =s_{m}\left(r_{m}, f(0)\right)+r_{m}{ }^{m} \lambda_{m} \\
& =f(0)+r_{m}{ }^{m} \frac{\left[s_{m}\left(r_{m}, f\right)-f(0)\right]}{r_{m}{ }^{m}} \\
& =s_{m}\left(r_{m}, f\right) .
\end{aligned}
$$

Thus $s_{n}\left(r_{n}, f\right)=s_{n}\left(r_{n}, g\right), n=1,2, \ldots$. Since $f \in \Lambda_{\beta} \subset \Gamma_{\beta}$ and $g \in \Gamma_{\beta}$, then, by Theorem $1, f \equiv g$.

We now prove (22). Write $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$. Since $f \in A_{B}$, then $\lim _{n \rightarrow \infty} n\left|a_{n}\right|^{\beta / n}=0$. If $r_{n}=0, \lambda_{n}=q_{n}\left(r_{n}, f\right)=s_{n}\left(r_{n}, f\right)=f^{(n)}(0) / n!=$ a_{n} and (22) follows immediately. If $r_{n}>0$, then by the definition of $q_{n}\left(r_{n}, f\right)$

$$
\begin{aligned}
\lambda_{n} & =q_{n}\left(r_{n}, f\right)=\left(s_{n}\left(r_{n}, f\right)-f(0) / r_{n}\right) \\
& =a_{n}+\sum_{k=2}^{\infty} a_{n k} r_{n}^{n k-n} .
\end{aligned}
$$

Let $\epsilon>0$ be given such that $\epsilon d<1$, where $r_{n}<d n^{1 / \beta}$ for all n. We have for large n,

$$
\begin{aligned}
\left|\lambda_{n}\right| & \leqslant\left|a_{n}\right|+\sum_{k=2}^{\infty}\left|a_{n k}\right| r_{n}^{n k-n} \\
& \leqslant \frac{\epsilon^{n}}{n^{n / \beta}}+\sum_{k=2}^{\infty} \frac{\epsilon^{n k}}{(n k)^{n k / \beta}} \cdot d^{n k-n} n^{(n k-n) / \beta} \\
& \leqslant \frac{\epsilon^{n}}{n^{n / \beta}}\left(1+\sum_{k=2}^{\infty}(\epsilon d)^{n k}\right) .
\end{aligned}
$$

The geometric series converges, and, thus, tends to zero as $n \rightarrow \infty$. Therefore, $\lim _{n \rightarrow \alpha} n\left|\lambda_{n}\right|^{n / \beta}=0$, which completes the last proof.

Final Remarks

For a given sequence of radii $r_{n}, r_{n}=O\left(n^{1 / \beta}\right)$, we can characterize large classes of entire functions from their "means," $s_{n}\left(r_{n}, \cdot\right)$. However, we would like to know if Γ_{β} in Theorems 1 and 3 and Λ_{β} in Theorem 4 are the largest classes possible.

References

1. G. R. Blakley, I. Borosh, and C. K. Chui, A two-dimensional mean problem, J. Approximation Theory 22 (1978) 11-26.
2. R. P. Boas, Jr., "Entire Functions," Academic Press, New York, 1954.
