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We study the characterization of an entire function from its ““means,” that is,
a combination of the function’s averages on concentric circles and its derivatives
at the center. It is shown that a large class of entire functions is uniquely de-
termined from this combination. Given a sequence {r,} of nonnegative radii
which are restricted in growth and a sequence of complex numbers {A,}, which
depends on {r,}, a unique entire function f'is found such that A, is the “mean” of
fon the circle ' z | == r,, solving a mean interpolation problem. Consequently, a
scries representation for a given entire function is constructed from its “means.™

1. INTRODUCTION AND RESULTS

Let I, be the class of entire functions of growth category (p, 7} <. (5, 0}
i.e., the order p of fis less than or equal to 8 and if p = S then the type 7 is
equal to 0. Let w,* = exp(i27k/n), k == 1, 2,..., n, be the nth roots of unity.
Given a sequence of radii {r,}, r, == 0, we consider the following “means”
of an entire function £,

‘Y'n,(rn ‘f') - ,lI- Z -f(,-nm,v"]«f). lf ].n ” 03
ii=1
= fO0)n!, if r, = 0.

That is, if r,, =+ 0, s,(r,, , f) is the average of f at equally spaced points on the
circle 'z = r,,andifr, =0, s5,(r,., f) = a, . the Taylor coefficient of fat 0.

In [1]. Blakley et al. studied the means, s,(r, , ), for functions holomor-
phic in the unit circle, where 0 < r,, <{ |. We obtain some analogous results
for entire functions and for nonnegative radii, r, , of restricted growth.

First. we have

TuroreM 1. Let fe I'y and let r, - 0 for an infinite number of n's such
that v, - O, [f

s o f) 0, w120 (1
then f 0.
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Thus, if {r,} is given as above and f, ¢ ¢ I, such that for n 2,
S Y s, . @) then s, . f - g) -0 for n = 1. 2., and /g
Therefore, certain entire functions are uniquely determined by the s,(r, . ‘).

As a consequence ol the proof of Theorem I, we have the following

COROLLARY. Let f be an entire function and r, -0 for at most a finite
number of w’s. If f(O) — O and s, (¢, . f)y Oforn - 1,2 . then f .

None of the conditions in (1) can be left cut, as seen in

THEOREM 2. Let r, 0. For cach positive integer m there is a unique
polynomial p,, of degree m, leading coefficient equal to 1, and p,(0) 0
such that, for n =1, 2.,

’\'71(}'7[ Kl /)m) g rrl,“b7/,m A l/ Fin O~

) ) (2)
o 5Il.lH A i/ ’.H/ - 0'
It will be shown that if all r,, - O then p,, z”. as would be expected.
Let
‘S’:”(r" *,) Sn("]l "_f‘),"”‘?[“' lf rl/, :’:) 0‘
(3)

0y n!, it r, = 0.

Given a sequence of nonnegative real numbers {r,}, (the *“mean’ interpola-
tion radii), and a sequence of complex numbers {A,}, (the mean data), is
there a unique function f such that §,(r, . f) - A, , for all #n? We have the
following answer.

THEOREM 3. Let ry, - O'P), B 20, and let {A,} be any sequence of
complex numbers satisfying

ltm p [ A, 2 0. (4)
Then the polynomial series
X /\n,pn(:) (%)
11

converges uniformly on every compact set of the complex plane to an entire
SJunction f in Iy such that §,(r, ,f) — A, .0 — 1,2, Furthermore, f is the
only function in I'y which satisfies this mean interpolation property.
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The following theorem will allow us to reconstruct an entire function f
from the s,(r, , f), where the A, of (4) will be replaced by

qn(rn af) - (Sn(rn vf) — f(O))J”'n”’ if Fy 0,
B Sn(rn ’f)a it v, - 0.

Note, ¢,(r, ’f) = fn(rn 7f)’ lff(O) = 0.
Finally, letting A, , a subset of {7, be the set all entire functions of order
strictly less that 8, we have

(6)

THEOREM 4. Let r, =0 and r,, == O(n*/®). Every function f in A, can be
represented by the polynomial series

FG) = FO) = S aulrn 1) pal2), %)

n=1

where the p, are given in Theorem 2.

2. UNIQUENESS RESULTS

Let p be the order and 7 be the type of a function f. It is known [cf. [2]] that

. nlogn
lim su = = p, 8
P Tog(1a, ) P @®
and
limsupnla, ™ = erp, if 0 <p < . (9

We will need the following lemma which is a consequence of (8) and (9).

LEMMA 1. Let f(z2) = Y1 az® be of growth category (p, 7). Then
(p. 7) < (B. 0) for some B > 0 if and only if

lim n {a, |*" — 0. (10)
Let f(z) = S,y azz". If r, > 0, then

> N ., = _
Sn(rn ’f) - Z a/rrn]L (Z Z W;LL - Z an/cr;:/.'
=0 /

i1 k=0

If s, = 0, we have

o
ayr, + Y a, 0 =0, for r = 0. (I
k=1

n
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It will be necessary in the proof of Theorem | to show that f(0) ¢4, 0.
To do this we have

LEmma 2. Let fely . r, = O /P and ) be a subsequence such that
Iy, > 0 for each j. lfsnl_(r,,,j Lf)Y 0, then f(O) == 0,

Proof. By hypothesis and Eq. (11), we have

1k
dy L4yt n}‘- / I » =
-1 ¥ E
Thus,
B v . : Congk 3
‘[’(!‘ Z “'(117//.“’73" ”.‘)
fr=
for each ;.

In order to complete the proof of Lemma 2, let ¢ - O such that , - ¢n'”
forallnandlet 0 < ¢ < ¢7# Since f'e I, , we have by Lemma |. that ¢,
(e/n)?/% for all large n and Eq. (12) becomes

bl

: . € ¥ n ki
Tag ) (7,'7.]\7 ) “{c"ny)
4

Lo
g
Z (é(ﬁ)“’,ﬂ
fo=1

The series is convergent for each #; since ec? - |. Thus as j - ¢ the serics
tends to zero. Therefore, f(0) - @, 0, which completes the proof of
Lemma 2.

Proof of Theorem 1. Let f(z) = Z‘,‘;U a,z*, then by (11)y and Lemma 2
Z CI)}/LJ.:(IL‘ ) 0‘ lf 2 0. ( 13)
A1

Using the definition of s, for r, 0 and the fact that each v, 0. we have

a, = 0. it r, 0. (14
Equations (13) and (14) form an infinite homogeneous system of cquations.
It is, therefore, necessary and sufficient to prove this system has only the
trivial solution. Let B -= (4, ) be the infinite coeflictent matrix given by

by i i Lk
(135)
= (), T RSN
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where r,® — I, even if r; = 0. Equations (13) and (14) can be written as the
matrix equation BA” = O, where 4 = (a,, ay,...).

Let By = (b; 1)1 t)icinen » N == 1, 2,..., be the truncated N > N matrices.
Since det(By) == 1, for each N, there exists an inverse G of By for each N,
which is a truncation of the infinite matrix

g(l) g2
G = (gik)) = gz'(]) ge(z)

In fact GyBy -= Iy, where I is the N > N identity matrix and so
N
Z g}(k) bk,n = 8j,n » l S /, n ‘/‘ N’
k=1

where 9, , is the Kronecker delta. Using (15), we have

g k=, (16)

ki

which is independent of V.
By induction it was shown in [I] that

g(m) =0, if j1n (17
and
g/(/) - la J - 1, 2,...,

and it follows from (16) that

gy =— 3% gkyrr, jin, j<n (18)

Iln
J<k<n

Let /2 be the function defined recursively on the set of positive integers by

() =1,

h(n) = Y A, if > 1.
lin
l<n

Later, we will use the following lemma from [1].
LEMMA 3. Let h(n) be defined as above, then
h(n) <7 200gn/dogd? n=1,2,..

Letting ¢, = max,_ {7}, we have the following bound on g;(k).
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LEMmA 4. For cach | and k

g (R k) o

where o0 = 1, if o, = 0.
Proof. Since h(k) > 1 and &, - 0.
gk) — 0 < k) -k,
and
g(j) == 1 < h(j) = h(j)oi~.

Assume that for each j, j k. Lemma 4 is true for each d, | = d <= k.

Then, by (18) and the fact that ¢, << 5., , we have
LR Y g )

dik

d<k

Y (h(d) o4y gt

ik

A<l

(r;::”‘ Z h(dy - O‘ﬁ:j"'h(/\').

d i
a-

which completes the proot.
We are now ready to complete the proof of Theorem 1. By matrix maulti-

plication [cf. [1]] we have for each /,

la; | = Y Twerl,  N=j4 174 20, (19)
h=Nt1
where
¢, =y gld)yrit
T
(I<:,/.'

We wish to show the series in (19) is convergent, for then the right-hand side

would go to zero as N — oo, implying @; == 0.

From the proof of Lemma 4 and the fact that &
7« h(k). Since r, = O(n'/8), then there is a constant ¢ > 0, such

= N, it Tollows that

Pep | < ay Tk
that o, << cn'/? for all n.
Let 0 < e < lic. By Lemma 1, | a;, [V* < </k'/% and
Ui U= R()) I - efkLB
< (ec)fh(k)/(ckt 8y /8

[ac,
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for all large k. According to Lemma 3, it follows that
;(myl sup[h(k)[(ckVPY Ve = q < 1.

Thus,
}(im sup | ape, V¢ L ec < 1

and hence Z:=N+1 | arey | converges. Taking N — oo in (19), we obtain a; = 0
for each j = 1, 2,... . Therefore f(z) = a, = 0, which completes the proof of
Theorem 1.

Proof of Corollary. Since f(0) =0 we may write f(z) = Yro1 axz".
There exists a positive integer &, such that ry >0, and 0 =ry; = ry.s =
<. Thuss(r,,f) =a, =0forn =N+ LN + 2,...,and f(z) = Z;Ll agzk.
From Egs. (13) and (14) of Theorem 1, we obtain

[N/n]
Y a et =0, if r,>0
k=1

and
a, = 0, if r,=0.

which, for 1 <n <N, forms an N X N homogeneous system of linear
equations. This system is represented by the matrix equation

ByA"T = Oyyx »
where 4 = (a, ,..., ay) and By is the truncated matrix of Theorem !, which is
nonsingular. Hence, the only solution is 4 = 0 and, therefore, f(z) = 0.
3. REPRESENTATION BY POLYNOMIAL SERIES

We are now ready to present the

Proof of Theorem 2. Let p,(z) = a,,z" + - -+ a4z, and n > m. Then
ntk, k=1,., mand hence

l n H
Sn(rn 9pm) = E Z Z akwﬂ“
j=1 k-=1
m 12
= Z a/;;l‘ (Why =0
k=1 j=1

for Fp = 0. If Fp = 09 then sn(rn . pm) - P::)(O) = O’ since m < n.

640/30/1-4
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In order to determine p,, , we need to consider Eqgs. (2) only forn = 1I,..., m.
From (2) and (11) we have

[fm/nl

nik=1) ; .~ -
Y, arr = 0, if r >0, n<m,
k=1

and

a, = 1, if P o= 0, or Fr o= 0.

In all cases, the coeflicients 4, ,..., a,, of p,, are uniquely determined by the
nonhomogeneous system

ay, I

where B,, is the truncated characteristc matrix in the proof of Theorem 1
with inverse G,, = (g;(k))icikcm - Thus,

a, 0
= G m 0 ( 20)
a,, 1

Since g,,(m) = 1, a,, = 1 and this completes the proof.
In fact, we can derive p,, explicity. From (17) and (20), a;, = gi(m) =0
if k¥ + m. Hence, p,, is given by

pulz) = ) gilm) 2~ 2h

kim

If all r, are zero we obtain p,(z) == z7. This is true because g,(m) = 0, if
k <m and r, = 0. Indeed, from (18) g,(2k) == —gi(k) r,¥ = 0. Assume
g(d) = 0, for each d, k < d < m. Again from (17)

gim) = — Y gyt o

dim
k<d<m

We are now ready to prove Theorem 3 on interpolation.
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Proof of Theorem 3. First we prove the convergence of the polynomial
series (5). Let | z | << r; From (21) and Lemma 3, it follows that

| P2 < Y 1 gin)l |

kin

< Z o' Fh(n) rt

kin

< nh(n)[maxia, , ri]".

if r, < M, for all n, then max{s, , r} << ¢, for some constant ¢, , indepen-
dent of zand n. If | z | < r, then

LA P < enh(m))V [ A,

Since h(n) < 2008 #/10g * we have lim,_., sup[rh(n)]'/* — a < 1, and since
lim,.., | A, 377 == 0, it follows that

hrg I )\npn(Z)P/n = 0.

Thus, the series 3, _; A, p.(2) converges uniformly on every compact set of
the complex plane.

Suppose, however, r, — o0 as n — o, then for all large n, max{o, , r} = g,
and if | | < r, then

| A pol2)" < (nh(m)) "0y | A, 1.
By the hypotheses, there exist d > 0 and ¢ > 0 such that for all large n
o, < dn'®and | A, [V < efnt/B If | z | <, then
@ < ed (b))

for all large n and so

Iim sup | A, pu(2)M" < ed < 1

uniformly for | z | < r. Therefore, the series 3,,_ 1A A, pa(2) converges to some

entire function £, and we may write £(z) = Y,._, A, pu(2). Since p,(0) = 0
for all n, f(0) = 0.

Write f(z) = Y%, a;z*. In order to show that fe I';, it must be shown
that im,_,. & | a; |8/% = 0, according to Lemma [. Now by convergence,

Y@ = 3 A
SPRAPEIOE
22

=1

2 Akn gk(kn))

n=1
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Equating coefficients and noting that g,(k) = 1, we have

Ay Z Nin 8ilken) = Ay - Z A &ilkn).

n==1 =2

Recall that ¢, <Cdn'/® for all n. For any € >0, ¢ < 1/(2d), we have
[ A, | << (e/n /By for all large n. Thus, for large n,

;a];,] e /\ ] z ]Aln ) ’gk(kn)]

+ }_ | X | On™ (k)

=2

= klc/s + Z k T kniB [d(kn)t /6 -+ h(kn)

k,b,;[ Z (ed)ytr- ”h(kn)]

Now A(kn) < 2108 injlog 2  Dlin-1) for large #, and so
& 2 ed)En—1)
1a/f{ “>:W Z]( € ) .

The series in the above inequality converges. Thus as k --» <o, the series tends
to zero, then | a, | << ce®/k*/® for some constant ¢ and all large k. Since « is
arbitrary, it follows that lim,.,, &k | a; [?/* == 0. Therefore, f is of growth
category (p, 7) < (B, 0) and so fe [}

By Theorem 2 and the definition of §,(r, , f) in (3),

Sﬂ(’ﬂn > f) - Z )\m‘en("n ) /)m) /\n.

m=1

for each n == 1, 2,.... Furthermore, if g€ I'; and §,(r,,, g) A, for n -1,
2,..., then §,(r, ,f g) = 0 and, hence, s,(r,,f — g) 0. By Theorem 1.
S == g, which completes the proof of Theorem 3.

Proof of Theorem 4. We will show that any fe [ is given by (7). First let

2) = fO) 3 Aupaa),
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where A, == g,(r, , f) (see (6)). If it can be shown that

limn|A, |P" =0, (22)

nowx

then, according to Theorem 3, we will have ge I'; . If r, =0,

sm(’m s g) = Sm(vrm ,f(O)) +’ Z )\nsm("w s pn)
N=1

=04 A, = G ,f)
= Sp(Fm > f)-

If r, > 0, then

Sm(r"' ? g) - Sm(r"! ’ f (0)) +' r mm}‘m

_ w Bl 5 f) — f(0)]
= f(0) + ry, :

= Sm(rm B f)

Thus s,(rn,f) = su(rn. g, n=1,2,. .Since fe A, CI;and ge Iz, then,
by Theorem 1, f= g.

We now prove (22). Write f(z) = Spo axzt. Since fe Ay, then
limn—wc nla, |8/n = 0. If r, =0, )\'n = qn(rn 7f) - sn(rn ’f) ::f""’(O)/n! -
a, and (22) follows immediately. If r, > 0, then by the definition of g,(r, , f)

An = qn(rn af) = (S"(l‘n sf) - f(())/l‘ﬂ)

m
m

o
. nk--n
—a,+ Y a,rrn

nk’ n
k=2

Let € =~ 0 be given such that ed < 1, where r, <C dn'/® for all n. We have
for large n,

|)\n! < |an | -+ Z lanklrzln'-n
k=2

nk

L4
€
n . . dnlc—nn(nlc— n)/8
kgz ( k)""’/B

€'Il

& nr/8

,,i—/s ( 1+ ]Z (ed)"k).

The geometric series converges, and, thus, tends to zero as n — 0. Therefore,
lim,,. 1| A, {8 = 0, which completes the last proof.
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FINAL REMARKS

For a given sequence of radii r, , r, = O(n'/®), we can characterize large
classes of entire functions from their ““means,” s,(r,, , ‘). However, we would
like to know if Iy in Theorems 1 and 3 and A, in Theorem 4 are the largest
classes possible.
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