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We study the characterization of an entire function from its "means," that is.
a combination of the function's averages on concentric circles and its derivatives
at the center. It is shown that a large class of entire functions is uniquely de­
termined from this combination. Given a sequence {rnl of nonnegative radii
which are rcstricted in growth and a sequence of complex numbers (An}, which
dcpcnds on [rn:, a unique entire function lis found such that An is the "mean" of
f on the circlc z I rn , solving a mean interpolation problem. Consequently, a
scries representation for a given entire function is constructed from its '·means."

I. INTRODUCTION AND RESULTS

Let r" be the class of entire functions of growth category (p, T) (,8, 0),
i.e" the order p off is less than or equal to f3 and if p f3 then the type T is
equal to O. Let ll'n" = exp(i27Tkjn), k== I, 2, ... , n, be the nth roots of unity.
Given a sequence of radii {r,,}. 1'1/ 0, we consider the following "means"
of an entire function!,

I "
sn(rl/ ,f) ---- .. I f(r"w,,'-'). if 1"1 O.

II 1,:-=1

f(")(O) II ! , if r" O.

That is, if rl! 0, sn(rn ,f) is the average offat equally spaced points on the
circle:: rn , and if I'n ~ 0, sn(rn ,f) an , the Taylor coefficient offat O.

In [I], Blakley et al. studied the means, sirn , .), for functions holomor-
phic in the unit circle, where 0 < rn I. We obtain some analogous results
for entire functions and for nonnegative radii, r n • of restricted growth.

First. we have

THEOREM I. Let fE TIJ and let 1'"

that r" 0(n1/8). If
o for all illfinite lIumber of 11'.1' such

0, II 1.2..... ( I )

thell f O.
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Thus. if [1',,: is given as above and l g l~J such that for II I. 2....
sn(r" ~ .l) Sf/ern "g). then sn(r/l"./· g) 0 for 17 i. 1..... and.r g.
Therefore, certain entire functions are uniquely determined by the sll(r il • ').

As a consequence of the proof of Theorem I. we have the following

COROLLARY. Let f be an entire function and r il

number of n's. If1(0) 0 and sn(rl/ . f) 0 for n
ofi!!' at most ({ Ilnite

I. 2.... then! O.

None of the conditions in (I) can be lert out, as seen in

THEORDI 2. Lct I'll

polynomial Pill of degree
such that. for n I. 2.....

O. lor each positive integer 111 there II a IIl1lillli'

111, leading coefficient equal to I. and P'II(O) 0

\I/(r ll , fill,) rnl/bn,11I if r m O.
(2)

8n . ,u if J"I/i O.

It will be shown that if all I'll

Let
o then Pill as would be expected.

,<i"(r,, .f) ,In(rl/ ,/)/rlii/.

/11I1(0)n 1•

o.
O.

Given a sequence of nonnegative real numbers {r,,}, (the "mean" interpola­
tion radii). and a sequence of complex numbers {"-n}, (the mean data), is
there a unique function f such that slI(r" . f) "-" , for all n? We have the
following answer.

THEOREM 3. Let rll O(n l
/ IJ ). /-3

complex numbers satisfying
O. and let {"-II: be ({ny sequence of

lim n ! "-n
n-)'I

Then the polynomial series

I I\,/P,,(::)
/1--1

O. (4)

(5)

converges uniformly on every compact set of the complex plane to an entire
function f in Til such that s"(r,, • f) "-n . n -- I, 2•.... Furthermore. f is the
only function in TrJ ll'hich satisfies this mean interpolation property.
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The following theorem will allow us to reconstruct an entire function f
from the s"(r,, ,f), where the lin of (4) will be replaced by

qn(rn ,f) _.._- (sn(r" ,f) - f(O)) 1',,", if I'll O.
(6)

s"(r,, ,f), if "/1 O.

Note, CJ"(r,, ,f) ~- sn(rn ,f), if f(O) C~ O.
Finally, letting 11[3, a subset of Tn, be the set all entire functions of order

strictly less that (3, we have

THEOREM 4. Let I'n 0 and rn O(n1 / fJ ). Every function fin 11{3 can be
represented by the polynomial series

fez) = f(O)- I CJn(r" ,f) Pn(Z)'
It---=l

where the Pn are given in Theorem 2.

2. UNIQUENESS RESULTS

(7)

Let p be the order and T be the type of a function! It is known [cf. [2]] that

n 10" nlJm sup ,b__

/1 10g(!.1 a" I)
p, (8)

and
lim sup n I a/1 lo/n = eTp,
!l--7X'

if 0 < p < 00. (9)

We will need the following lemma which is a consequence of (8) and (9).

LEMMA I. Let fez) = L;~1 a/cz/c be of growth category (p, T). Then
(p. T) «(3. 0) for some (3 > 0 if and only if

lim n I an
/1

- o. (10)

en (1 n .) ":s (I' f) = , a J" " -, wJ" =",' a. r"I:.
n n' L.. k n L n L.. nli: 'It

,,~O n j.] . ,,~()

If s" C~~ 0, we have

a II' -I-- '. a r,,(Ie-l) = 0
0 1 "It I L rtf.; n '

"~1

for I'
"

(11)
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O(nJ / iJ ) and {rn} be a subsequence such that
O. then f(O) } O.

It will be necessary in the proof of Theorem I to show thatf(O)
To do this we have

LEMMA 2. Let fE 1~1' 1'"

1'". 0 {or each j. lfs" (rn J)
J' • j J

Prool By hypothesis and Eq. (II). we have

Thus.

1,2,....

Y . (/ i I' ','"il,.£.-: ·n;l.
I

( 12)

for each.i-
fn order to complete the proof of Lemma 2, let (' 0 such that rfl ('n l

for alln and let 0 < E ('-N. SincefE T,l • we have by Lemma I. that {lJI

(E/n)n/13 for all large nand Eq. (12) becomes

I (---;~:)
I, I . II);

I (EC
ii )"!-.

Icc I

The series is convergent for each nj since EC ii I. Thus as j -+ x the series
tends to zero. Therefore. frO) au O. which completes the proof of
Lemma 2.

Proof of Theorem I. Let fez)

I, I

O. if I'
/I

o. ( 13)

Using the definition of ,I',l for rJl o and the fact that each Ii. O. we have

O. if 1'" O. (14)

Equations (J 3) and (14) form an infinite homogeneous system of equations.
I t is, therefore, necessary and sufficient to prove this system has only the
trivial solution. Let B (bi.lJ be the infinite coefficient matrix given by

b i .1.'
1'1, if i ! k.)

( 15)
O. if j-rk
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where r/= 1, even if rj =~ O. Equations (13) and (14) can be written as the
matrix equation BAT = 0, where A == (a l , az ,...).

Let BN = (bJ./JI,k)l,;;j,k,;;N, N == 1, 2, ... , be the truncated N N matrices.
Since det(BlJ =~ I, for each N, there exists an inverse GN of BN for each N,
which is a truncation of the infinite matrix

H]
In fact GNBN ~ IN, where IN is the N ;< N identity matrix and so

N

I g,(k) ble ,,, = OJ,n ,
k~l

j, n N,

where OJ,n is the Kronecker delta, Using (15), we have

I gj(k) r;;k
k'n

which is independent of N.
By induction it was shown in [I] that

g,(n) = 0,
and

i3
j ,11. '

if it 11

(16)

(17)

g,{j) = I,

and it follows from (16) that

j I, 2, ... ,

g;<n) = ~ I gj(k) r;,j,
kin

j<;).'<n

j \ 11, j 11. (18)

Let h be the function defined recursively on the set of positive integers by

h(1) == L

h(n)- I h(/),
lin
l<n

if 11 > 1.

Later, we will use the following lemma from [I].

LEMMA 3. Let hen) be dejined as above, then

n = 1,2,....

Letting (J" = maX1c;kc;n{r,,}, we have the following bound 011 g,(k).
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LEMMA 4. For each .I and k

Proof Since h(k) J and u/, O.

and

o h(k) . a;:-j if .It k.

Assume that for each .I, .I k. Lemma 4 is true for each d,
Then, by (18) and the fact that Uk UI, 1 , we have

I I g/d)! r;;-d
Ii:!.
d<1:

I (h(d) u;; J) a~-d
11.:7\'
d/k

d k.

u;:-J I h(d)
I:

which completes the proof.
We are now ready to complete the proof of Theorem I. By matrix multi­

plication [cf. [l J] we have for each .I,

where

! a, i I
j,'=N! 1

N=.i+l,j

c= \' ~(d) rl:- d •
J. L l J Ii

({ k
d<;/,'

.,
-~ ... , ( 19)

We wish to show the series in (19) is convergent, for then the right-hand side
would go to zero as N --+ 00. implying (Ii O.

From the proof of Lemma 4 and the fact that k N, it follows that
! Ck I « u9;-j .h(k). Since r" = 0(n1/f1 ), then there is a constant c > O. such
that Un en1/B for all n.

Let a < E < lie. By Lemma 1, I ai, !III, :c;kl/0 and

rr1-j/l(h(k))11/' . E/k1/B

(EC)[h(k)/(ek1/B)jJ1/0
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for all large k. According to Lemma 3, it follows that

lim sup[h(k)/(ckl /8)i]1/k = a < 1.
k-~'X:,

Thus,

47

and hence L:;~N+l Iakck I converges. Taking N ~ 00 in (19), we obtain aj = °
for each} = 1, 2,.... Thereforef(z) = ao = 0, which completes the proof of
Theorem 1.

Proof of Corollary. Since f(O) = ° we may write fez) = L::~l akzk.
There exists a positive integer N, such that rN > 0, and °= rN +1 = rN+2 =

.... Thus sn(rn , f) = an = °for n ~~ N + I, N + 2, ... , andf(z) = L:~=l akzk.
From Eqs. (13) and (14) of Theorem 1, we obtain

and

[N/n]
L ankr~(/·l} = 0,
k~l

if rn > °

an =c 0, if rn = 0.

which, for 1 :S; n :S; N, forms an N x N homogeneous system of linear
equations. This system is represented by the matrix equation

where A = (al , ... , aN) and EN is the truncated matrix of Theorem 1, which is
nonsingular. Hence, the only solution is A '2= °and, therefore,f(z) ~ 0.

3. REPRESENTATION BY POLYNOMIAL SERIES

We are now ready to present the

Proof of Theorem 2. Let Prn(z) = all/zm --j- ... + alz, and n > m. Then
n l' k, k = 1, ... , m and hence

for rn > O. If rn = 0, then sn(rn • Pm) " p;,:')(O) = 0, since m < n.
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In order to determine Pm' we need to consider Eqs. (2) only for n = 1,... , m.
From (2) and (11) we have

[min]

I a r" 1k- 1 ) ----'. 0, if r =:-- 0, n <.:' n1,nk 1'2 II
k~J

an 0, if rn - 0,

and

am I, if rnt 0, or I'm 0.

In all cases, the coefficients a1 , ... , am of Pm are uniquely determined by the
nonhomogeneous system

where Em is the truncated characteristc matrix in the proof of Theorem 1
with inverse Grn = (gj(k»h;j.k,;;m . Thus,

(20)

Since gm(m) = 1, a1/l = I and this completes the proof.
In fact, we can derive Pm explicity. From (17) and (20), ak = gk(m) ~~ °

if k l' m. Hence, Pm is given by

Pm(Z) = I g,,(m) Zk.
k;'1n

(21)

If all rn are zero we obtain Pm(z) zm. This is true because gk(m) = 0, if
k < m and rk = 0. Indeed, from (I8) gk(2k) =- -gk(k) 1',/' = 0. Assume
gle(d) = 0, for each d, k < d < m. Again from (17)

g/c(m) = - I g/c(d)r~'-d = 0.
dim

k<d<m

We are now ready to prove Theorem 3 on interpolation.
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Proof of Theorem 3. First we prove the convergence of the polynomial
series (5). Let I z I ~ rl From (21) and Lemma 3, it follows that

IPn(z)1 ~ L \gk(n)\ I z II.
kin

:c:;; L a:-kh(n) r k

kin

~ nh(n)[max{an , rHn.

If r n M, for all n, then max{an , r} < Cr for some constant Cr , indepen-
dent of z and n. If I z I ~ r, then

An Pr,(z)!l/n ~ clnh(n))l/n ! An

Since h(n) < 2(JOg "/log 2)2, we have lim n _. w sup[nh(n)]1/n = a ~ I, and SInce
lim"_Cf i An ~lj" 0, it follows that

Thus, the series :L:~l An Pn(z) converges uniformly on every compact set of
the complex plane.

Suppose, however, rn --+ was n --+ 00, then for all large n, max{an , r} = an
and if z I r, then

I AnPn(z)!l/n ~ (nh(n)l/"an I An 1
1/n.

By the hypotheses, there exist d > 0 and E > 0 such that for all large n
an ~ dn1/8 and I An 11 /" < E/n1

/ 8• If! z I ~ r, then

! AnPn(z)11/n ~ Ed(nh(n))l/n

for all large n and so

lim sup I An Pn(z)1 1
/n ~ Ed < I

,,---700

uniformly for Iz I ~ r. Therefore, the series :L:~l An Pn(z) converges to some
entire function f, and we may write f(z) = :L:~1 An Pn(z). Since Pn(O) = 0
for all n,f(O) = O.

Write f(z) =c :L;d akz". In order to show that fE F8 , it must be shown
that lim"Aoc k I ak 1

8 / k = 0, according to Lemma I. Now by convergence,
[£, CD

L akzlc = L AnPn(Z)
k~l n~l

~l An (~ gk(n) Zlc)

= ~1 Ct Akngk(kn)) zk.
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Equating coefficients and noting that gle(k) c= I, we have

I A'cngle(kn) = Ale
1/==1

I Alen g,,(kl1).
n,-,,2

Recall that Un "'; dn1/8 for all n. For any E .> 0, E < I!(2d), we have
I An I < (E/n1/8)n for all large n. Thus, for large n,

: ak I
ct,

I I Ale" II gle(kn)!

cD

I \ . , \~ I \ I len-Ie; (k )
II/;' i 'f- L /lien akn 1 n

n=2

Now h(kn) ~ 2(log knllog 2)' < 2/;,(n-1\ for large n, and so

Ie ,L-

_E~ " (2Ed) le ln-])kle18 L .
n",j

The series in the above inequality converges. Thus as k .... 00, the series tends
to zero, then I ai' I < cEI'/k Ie18 for some constant c and all large k. Since E is
arbitrary, it follows that limle~oo k 1 ale 1

81k = O. Therefore, f is of growth
category (p, T) ~ (13, 0) and so f E T8 .

By Theorem 2 and the definition of sn(rn ,j) in (3),

cD

s"(r,, ,f) L '\",.\:,,(1',,, JIm) An
l/l=l

for each n ], 2, .... Furthermore, if g E TN and sn(rn , g) An for 11 I,
2, ... , then sn(rn , f - g) = 0 and, hence, sn(rn , f - g) O. By Theorem I.
f "c, g, which completes the proof of Theorem 3.

Proof of Theorem 4. We will show that any fE TN is given by (7). First let

g(z) == lCO) -I- L AnPn(z),
11,=1
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where An qn(rn ,j) (see (6». If it can be shown that

lim n I An le/n = 0,
n--)OC;

then, according to Theorem 3, we will have g E Fe . If r", = 0,

s",(r", ,g) = s",(r", ,/(0» -+- L AnSm(r", , Pn)
n=}

= 0 -+- Am c= qm(r", ,j)

~ s",(r", ,f).

If ',,, O. then

51

(22)

Thus sn(rn ,j) = sn(rn, g), n = I, 2, .... Since IEAe C Fe and g E Fe, then,
by Theorem I, I =c g.

We now prove (22). Write I(z) = L;~o a/cz". Since IE A8 , then
limn">"" n I an 18In == O. If rn == 0, An = qirn ,j) = sirn ,I) == pnl(O)jn! =~

an and (22) follows immediately. If rn > 0, then by the definition of qn(rn , j)

-=~ a-+-"' a rnk- II
•

n ~ -nk n
7c=2

Let E 0 be given such that Ed < I, where rn < dn l/8 for all n. We have
for large n,

1 An I ~. 1 an I -+- L 1 ank I r:',. II

k~2

The geometric series converges, and, thus, tends to zero as n --+ 00. Therefore,
Iim'H'- n I An In l8 = 0, which completes the last proof.
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FINAL REMARKS

For a given sequence of radii r n , rn ~c, O(n1(8), we can characterize large
classes of entire functions from their "means," sn(rn, '). However, we would
like to know if Til in Theorems I and 3 and A8 in Theorem 4 are the largest
classes possible.
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